Non-isotopic Legendrian Submanifolds in R
نویسندگان
چکیده
In the standard contact (2n+1)-space when n > 1, we construct infinite families of pairwise non-Legendrian isotopic, Legendrian n-spheres, n-tori and surfaces which are indistinguishable using classically known invariants. When n is even these are the first known examples of non-Legendrian isotopic, Legendrian submanifolds of (2n + 1)-space. Such constructions indicate a rich theory of Legendrian submanifolds. To distinguish our examples we compute their contact homology which was rigorously defined in this situation in [7].
منابع مشابه
NON-ISOTOPIC LEGENDRIAN SUBMANIFOLDS IN R2n+1
The contact homology, rigorously defined in [7], is computed for a number of Legendrian submanifolds in standard contact (2n+1)-space. The homology is used to detect infinite families of pairwise non-isotopic Legendrian n-spheres, n-tori, and surfaces which are indistinguishable using previously known invariants.
متن کاملTHE CONTACT HOMOLOGY OF LEGENDRIAN SUBMANIFOLDS IN R2n+1
We define the contact homology for Legendrian submanifolds in standard contact (2n + 1)-space using moduli spaces of holomorphic disks with Lagrangian boundary conditions in complex n-space. This homology provides new invariants of Legendrian isotopy which indicate that the theory of Legendrian isotopy is very rich. Indeed, in [4] the homology is used to detect infinite families of pairwise non...
متن کاملLEGENDRIAN SUBMANIFOLDS IN R2n+1 AND CONTACT HOMOLOGY
Contact homology for Legendrian submanifolds in standard contact (2n + 1)space is rigorously defined using moduli spaces of holomorphic disks with Lagrangian boundary conditions in complex n-space. The homology provides new invariants of Legendrian isotopy. These invariants show that the theory of Legendrian isotopy is very rich. For example, they detect infinite families of pairwise non-isotop...
متن کاملLegendrian Mirrors and Legendrian Isotopy
We resolve a question of Fuchs and Tabachnikov by showing that there is a Legendrian knot in standard contact R with zero Maslov number which is not Legendrian isotopic to its mirror. The proof uses the differential graded algebras of Chekanov. A Legendrian knot in standard contact R is a knot which is everywhere tangent to the two-plane distribution induced by the contact one-form dz− y dx. Tw...
متن کاملEquivariant Gluing Constructions of Contact Stationary Legendrian Submanifolds in S
A contact stationary Legendrian submanifold of S is a Legendrian submanifold whose volume is stationary under contact deformations. The simplest contact stationary Legendrian submanifold (actually minimal and Legendrian) is the real, equatorial n-sphere S0. This paper develops a method for constructing contact stationary (but not minimal) Legendrian submanifolds of S by gluing together configur...
متن کامل